Personnel
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Memory-aware tree partitioning on homogeneous platforms

Participants : Anne Benoit, Changjiang Gou, Loris Marchal.

Scientific applications are commonly modeled as the processing of directed acyclic graphs of tasks, and for some of them, the graph takes the special form of a rooted tree. This tree expresses both the computational dependencies between tasks and their storage requirements. The problem of scheduling/traversing such a tree on a single processor to minimize its memory footprint has already been widely studied. Hence, we move to parallel processing and study how to partition the tree for a homogeneous multiprocessor platform, where each processor is equipped with its own memory. We formally state the problem of partitioning the tree into subtrees such that each subtree can be processed on a single processor and the total resulting processing time is minimized. We prove that the problem is NP-complete, and we design polynomial-time heuristics to address it. An extensive set of simulations demonstrates the usefulness of these heuristics.

This work has been accepted as a short paper in the PDP 2018 conference [50].